机器学习社区目前没有记录数据集的标准化过程,这可能导致高赌注域的严重后果。要解决此差距,我们提出了数据集的数据表。在电子行业,每个组件,无论多么简单或复杂,都附带了一个描述其操作特征,测试结果,推荐使用和其他信息的数据表。通过类比,我们建议每个数据集都附有一个数据表,这些表记录了它的动机,组成,收集过程,推荐用途等。数据集的数据表将有助于在数据集创建者和数据集消费者之间更好地沟通,并鼓励机器学习界优先考虑透明度和问责制。
translated by 谷歌翻译
As artificial intelligence (AI) becomes a prominent part of modern life, AI literacy is becoming important for all citizens, not just those in technology careers. Previous research in AI education materials has largely focused on the introduction of terminology as well as AI use cases and ethics, but few allow students to learn by creating their own machine learning models. Therefore, there is a need for enriching AI educational tools with more adaptable and flexible platforms for interested educators with any level of technical experience to utilize within their teaching material. As such, we propose the development of an open-source tool (Build-a-Bot) for students and teachers to not only create their own transformer-based chatbots based on their own course material, but also learn the fundamentals of AI through the model creation process. The primary concern of this paper is the creation of an interface for students to learn the principles of artificial intelligence by using a natural language pipeline to train a customized model to answer questions based on their own school curriculums. The model uses contexts given by their instructor, such as chapters of a textbook, to answer questions and is deployed on an interactive chatbot/voice agent. The pipeline teaches students data collection, data augmentation, intent recognition, and question answering by having them work through each of these processes while creating their AI agent, diverging from previous chatbot work where students and teachers use the bots as black-boxes with no abilities for customization or the bots lack AI capabilities, with the majority of dialogue scripts being rule-based. In addition, our tool is designed to make each step of this pipeline intuitive for students at a middle-school level. Further work primarily lies in providing our tool to schools and seeking student and teacher evaluations.
translated by 谷歌翻译
Transfer operators offer linear representations and global, physically meaningful features of nonlinear dynamical systems. Discovering transfer operators, such as the Koopman operator, require careful crafted dictionaries of observables, acting on states of the dynamical system. This is ad hoc and requires the full dataset for evaluation. In this paper, we offer an optimization scheme to allow joint learning of the observables and Koopman operator with online data. Our results show we are able to reconstruct the evolution and represent the global features of complex dynamical systems.
translated by 谷歌翻译
Modern deep neural networks tend to be evaluated on static test sets. One shortcoming of this is the fact that these deep neural networks cannot be easily evaluated for robustness issues with respect to specific scene variations. For example, it is hard to study the robustness of these networks to variations of object scale, object pose, scene lighting and 3D occlusions. The main reason is that collecting real datasets with fine-grained naturalistic variations of sufficient scale can be extremely time-consuming and expensive. In this work, we present Counterfactual Simulation Testing, a counterfactual framework that allows us to study the robustness of neural networks with respect to some of these naturalistic variations by building realistic synthetic scenes that allow us to ask counterfactual questions to the models, ultimately providing answers to questions such as "Would your classification still be correct if the object were viewed from the top?" or "Would your classification still be correct if the object were partially occluded by another object?". Our method allows for a fair comparison of the robustness of recently released, state-of-the-art Convolutional Neural Networks and Vision Transformers, with respect to these naturalistic variations. We find evidence that ConvNext is more robust to pose and scale variations than Swin, that ConvNext generalizes better to our simulated domain and that Swin handles partial occlusion better than ConvNext. We also find that robustness for all networks improves with network scale and with data scale and variety. We release the Naturalistic Variation Object Dataset (NVD), a large simulated dataset of 272k images of everyday objects with naturalistic variations such as object pose, scale, viewpoint, lighting and occlusions. Project page: https://counterfactualsimulation.github.io
translated by 谷歌翻译
While transformers have greatly boosted performance in semantic segmentation, domain adaptive transformers are not yet well explored. We identify that the domain gap can cause discrepancies in self-attention. Due to this gap, the transformer attends to spurious regions or pixels, which deteriorates accuracy on the target domain. We propose to perform adaptation on attention maps with cross-domain attention layers that share features between the source and the target domains. Specifically, we impose consistency between predictions from cross-domain attention and self-attention modules to encourage similar distribution in the attention and output of the model across domains, i.e., attention-level and output-level alignment. We also enforce consistency in attention maps between different augmented views to further strengthen the attention-based alignment. Combining these two components, our method mitigates the discrepancy in attention maps across domains and further boosts the performance of the transformer under unsupervised domain adaptation settings. Our model outperforms the existing state-of-the-art baseline model on three widely used benchmarks, including GTAV-to-Cityscapes by 1.3 percent point (pp), Synthia-to-Cityscapes by 0.6 pp, and Cityscapes-to-ACDC by 1.1 pp, on average. Additionally, we verify the effectiveness and generalizability of our method through extensive experiments. Our code will be publicly available.
translated by 谷歌翻译
Measuring and monitoring soil organic carbon is critical for agricultural productivity and for addressing critical environmental problems. Soil organic carbon not only enriches nutrition in soil, but also has a gamut of co-benefits such as improving water storage and limiting physical erosion. Despite a litany of work in soil organic carbon estimation, current approaches do not generalize well across soil conditions and management practices. We empirically show that explicit modeling of cause-and-effect relationships among the soil processes improves the out-of-distribution generalizability of prediction models. We provide a comparative analysis of soil organic carbon estimation models where the skeleton is estimated using causal discovery methods. Our framework provide an average improvement of 81% in test mean squared error and 52% in test mean absolute error.
translated by 谷歌翻译
Prior work has shown that Visual Recognition datasets frequently underrepresent bias groups $B$ (\eg Female) within class labels $Y$ (\eg Programmers). This dataset bias can lead to models that learn spurious correlations between class labels and bias groups such as age, gender, or race. Most recent methods that address this problem require significant architectural changes or additional loss functions requiring more hyper-parameter tuning. Alternatively, data sampling baselines from the class imbalance literature (\eg Undersampling, Upweighting), which can often be implemented in a single line of code and often have no hyperparameters, offer a cheaper and more efficient solution. However, these methods suffer from significant shortcomings. For example, Undersampling drops a significant part of the input distribution while Oversampling repeats samples, causing overfitting. To address these shortcomings, we introduce a new class conditioned sampling method: Bias Mimicking. The method is based on the observation that if a class $c$ bias distribution, \ie $P_D(B|Y=c)$ is mimicked across every $c^{\prime}\neq c$, then $Y$ and $B$ are statistically independent. Using this notion, BM, through a novel training procedure, ensures that the model is exposed to the entire distribution without repeating samples. Consequently, Bias Mimicking improves underrepresented groups average accuracy of sampling methods by 3\% over four benchmarks while maintaining and sometimes improving performance over non sampling methods. Code can be found in https://github.com/mqraitem/Bias-Mimicking
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译
在现实世界中的对话系统中,生成的响应必须满足几个互锁的限制:内容丰富,真实且易于控制。语言生成中的两个主要范式 - 神经语言建模和基于规则的一代 - 都难以满足这些约束。即使是最好的神经模型,也容易出现信息的幻觉和省略,而现有的基于规则的形式的形式使得很难编写既灵活又流利的语法。我们描述了对话响应产生的混合体系结构,结合了两种方法的优势。该体系结构有两个组件。首先,使用新的正式框架定义的基于规则的内容选择模型,称为数据流转导,该模型使用声明性规则将对话代理的计算(表示为数据流图)转换为代表上下文可接受响应空间的无上下文语法。其次,使用这些语法来限制神经语言模型的输出的受约束解码过程,该过程选择流利的话语。最终的系统在人类对流利,相关性和真实性的评估中的表现都优于基于规则的方法和学识渊博的方法。
translated by 谷歌翻译
自2016年成立以来,Alexa奖计划使数百名大学生能够通过Socialbot Grand Challenge探索和竞争以发展对话代理商。挑战的目的是建立能够与人类在流行主题上连贯而诱人的代理人20分钟,同时达到至少4.0/5.0的平均评分。但是,由于对话代理商试图帮助用户完成日益复杂的任务,因此需要新的对话AI技术和评估平台。成立于2021年的Alexa奖Taskbot Challenge建立在Socialbot Challenge的成功基础上,通过引入交互式协助人类进行现实世界烹饪和做自己动手做的任务的要求,同时同时使用语音和视觉方式。这项挑战要求TaskBots识别和理解用户的需求,识别和集成任务和域知识,并开发新的方式,不分散用户的注意力,而不必分散他们的任务,以及其他挑战。本文概述了Taskbot挑战赛,描述了使用Cobot Toolkit提供给团队提供的基础架构支持,并总结了参与团队以克服研究挑战所采取的方法。最后,它分析了比赛第一年的竞争任务机器人的性能。
translated by 谷歌翻译